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ABSTRACT
Cardiopulmonary resuscitation (CPR) is a foundational life-
saving skill for which medical personnel are expected to
be proficient. Frequent refresher training is needed to pre-
vent the involved skills from decaying. Regular low-dose,
high-frequency training for staff at fixed intervals has proven
successful at maintaining CPR competence but does not take
into account inherent performance variability across learn-
ers. Tailoring refreshers to an individual’s past performance
would minimize personnel being trained too (in)frequently
and would ensure faster knowledge acquisition for new learn-
ers. To maximize the benefits of individualized schedules,
learning needs gleaned from past training history need to
be identified. A recent field study conducted among nursing
students showed that a cognitive model-based approach was
able to successfully trace the knowledge acquisition and decay
of learners and prescriptively devise personalized training
regimes that outperformed fixed schedules with regards to
both training efficiency and learners’ performance. Here, we
report a post-hoc analysis of the collected data to investigate
whether an alternative modeling approach, blending cogni-
tive modeling and machine learning, could have resulted in
even higher quality predictions. Our results reveal modest
improvements in predictive accuracy for ensemble models, in
which machine learning models predict the prediction errors
(i.e., residuals) of the standalone cognitive model. These
promising findings reveal strong applied utility for future use
in domains where sustained proficiency is a requirement.
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1. INTRODUCTION
Cardiopulmonary resuscitation (CPR) is a basic life-saving
skill but it has been shown that medical professionals are not
able to perform it consistently [1]. To remedy this shortfall,
several improvements to skill acquisition and maintenance
programs have been proposed [6]. One dimension of the shift
in educational focus [5] emphasizes increased re(training) effi-
ciency by moving towards personalized, adaptive scheduling.
The current work aims to facilitate this development.

Currently, as in many domains, refresher trainings at fixed
intervals (i.e., regular and the same for everyone) are re-
quired to maintain CPR compliance. A recent effort [14, 18]
has shown that a cognitive model representing regularities
of memory can be leveraged to devise personalized train-
ing schedules that maintain proficiency at lower cost and
risk. This effort will be referred to as the CPR field study
throughout the current text, and the data collected during
this experiment (see sections 2.1 and 2.2 for details) will form
the bedrock on which the efforts presented here will build.

Specifically, we conducted a post-hoc simulation study of
the CPR field study data to explore whether the cognitive
model’s predictions could be enhanced by combining it with
machine learning (ML) models that can leverage additional
information to improve predictive accuracy. The combination
of the two modeling approaches is achieved by fitting the
models sequentially, forming an ensemble model in which the
cognitive model’s residuals are learned by the ML models.
We show that their combined predictions afford a modest
improvement over the cognitive model by itself and are prefer-
able to using the ML models by themselves.

Modern CPR training is an interesting educational data
mining domain and modeling task because trainings are con-
ducted on advanced manikins equipped with an array of sen-
sors that quantify various aspects of a student’s performance
against objective performance guidelines [16]. Consequently,
large amounts of high-resolution data are readily collected
for a given event. The challenge is that events are usually
spaced months apart, which provides a sparse sampling space
for knowledge tracing. Consequently, it is difficult to make
precise predictions. However, given quality CPR’s central



role in the “chain of survival” [6, 5], even small improvements
in predictive accuracy can conceivably have large real-life
impacts—especially if predictive models can identify those
most in need of more frequent refresher trainings and help
them to maintain compliance.

Generally speaking, the fields of cognitive science and ma-
chine learning have approached the computational modeling
of a task like CPR skill acquisition and maintenance with
different mindsets [24]. Specifically, cognitive models primar-
ily focus on explaining the mechanisms that drive individual
differences; machine learning models primarily focus on out-
of-sample prediction. Aiming to combine the best of both
approaches, we engineered a pipeline of predictive models:
First, a cognitive model that was specifically developed as a
prescriptive tool [13] is fit to the training data, which results
in residuals that indicate which instances are fit poorly by
the cognitive model. Next, a ML model is fit to those resid-
uals, effectively learning to fine-tune the cognitive model’s
predictions. We show that such an ensemble approach can
provide improvements in predictive accuracy without sacri-
ficing interpretability, which is important to retain so that
the model’s personalized prescriptions are fully explainable.
With an eye on advancing predictive tools in the domain
of CPR training, our core motivation is to assess whether
alternative predictive approaches could have yielded better
result in the CPR field study, so that insights gained can be
leveraged in future applied settings.

1.1 The current study
Here, we will use the exact version of the cognitive model that
was used in the CPR field study as a yardstick to determine:
(I) How well would alternative instantiations of the cognitive
model have performed?, (II) Would a number of off-the-shelf
ML approaches have yielded superior predictions than the
cognitive model?, and (III) Could ML models be used to
learn the prediction error of the cognitive model?

We believe the last question is the most pertinent. How-
ever, the combined approach should be compared to the ap-
proaches that only use either of the two modeling approaches
in isolation to ascertain whether it has any benefit.

2. METHODS
This section will outline the data we used for our exploration,
the input features that are available in the data, the predictive
model we employed, and the setup of the simulation study
we conducted to address our research questions. Figure 1
provides a schematic overview of the approach and its parts
and connections are going to be explained in the following.

2.1 Data
Data were from a multi-phased, longitudinal study conducted
at 10 nursing schools across the United States [18]. A to-
tal of 475 nursing students started the study. Participants
were randomly assigned to 4 initial acquisition conditions
where they completed 4 consecutive CPR training sessions
that were spaced by 1 day, 1 week, 1 month, or 3 months.
Students were additionally randomized to 3 maintenance
training conditions where they refreshed their skills for 1
year at intervals of 3 months, 6 months, or at personalized
intervals prescribed by the cognitive model. During each
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Figure 1: Schematic of the various predictive models.

session, students completed a series of CPR events using the
Resuscitation Quality Improvement (RQI®) system with
Laerdal’s Resusci Anne® adult QCPR manikin.

First, students completed a pre-test consisting of 60 com-
pressions or 12 bag-mask ventilations with no feedback from
the manikin, followed by trainings where students received
real-time, dynamic feedback to guide, and then post-tests
with no feedback. RQI provides composite scores for the
quality of compressions and ventilations on scales of 0 to 100,
with higher scores corresponding to better performance. The
compression score is based on depth, rate, release, and hand
placement. The ventilation score is based on volume, rate,
and compliance with inspiration time.

Prior to the onset of the study, participants completed a
demographic questionnaire. Of the 475 participants that
began the study, we included in our study the 393 that
completed the initial acquisition phase. Due to the variations
in retraining schedules across the maintenance phase, not all
students completed the same number of sessions. We focus
here on data from the first through the eighth session since
the majority of students completed 8 sessions.

2.2 Input features
This section describes all information available in the “train-
ing data” box of Figure 1. As sessions progress, the number
of available training instances grows but the number of input
features is constant. Using the color-coded arrows in Fig-
ure 1 to categorize them, these features are detailed in the
following and the labels correspond to those in Figure 4A.

Gray arrow in Figure 1: time/lag: An event’s timestamp
expressed as the number of seconds since the first/previous
recorded event; score: The composite performance score
recorded for each event.

White arrow in Figure 1: compvent: Does the recorded event
correspond to performing compressions or ventilations?; ac-
qint and maintint: What acquisition-maintenance interval
combination was this user assigned to? Together, these de-
fine the 12 experimental conditions (see previous section for
detail) that the condition PPE variant is based on; session:
Session counter 1 through 8; pretrnpst: Was this a pre-
test, training, or post-test?; site, age, gender, height, and
weight: Demographic information associated with each user
(time-invariant). There were ten sites/locations and other
information was coded in years, male/female, inches, and
pounds, respectively; profile: We reduced the unique user
IDs to a low-dimensional set of performance profiles. This
approach was inspired by earlier work [2, 23] that showed
a small number of descriptive profiles could be obtained by
performing k-means clustering [9]. Here, we used k = 4,
and re-partitioned the training data on each iteration of the



simulation. Specifically, only pre-test scores across both skills
were taken into account.

Yellow arrow in Figure 1: decay rate and model time: The
two PPE terms computed when fitting PPE (see section
2.3.1) are passed to the ML models; residual: The difference
between PPE’s fit and score.

The three rightmost arrows indicate the predictions that
are made, emphasizing that the PPE+ML ensemble models
(purple) uses both the cognitive (blue) and machine learning
(red) models. Next, we outline which ML models were used
and how the five PPE variants were fit to the data.

2.3 Predictive models
As noted in Figure 1, there are a total of 29 models. Here,
we describe the PPE and ML models that make up the
PPE alone/ML alone predictions. The remaining majority
of models are based on combining the PPE+ML models by
first fitting the PPE as described below and subsequently
computing the PPE’s residuals in the training data and
training the ML model to predict those. The PPE+ML
predictions can thus be thought of PPE predictions that
were fine-tuned by a given ML model.

2.3.1 Predictive performance equation (PPE)
The PPE is a set of nested mathematical equations that
capture findings in the cognitive science literature associated
with the temporal dynamics of human learning and forgetting
[26]. These include the power law of learning, the power law
of forgetting, the spacing effect, and effects of relearning. Two
essential components of PPE are sub-equations that model
time and the rate of knowledge/skill decay. The model time
equation captures the idea that the age of items in memory
should be skewed toward the most recent presentations, but
the full study history should be represented. Hence, model
time for each instance i (across n instances) is wi × ti, where

wi =
t−0.6
i∑n

j=1 t−0.6
j

and ti is the time, in seconds, relative to the

first instance. The decay rate equation captures the idea that
spacing practice across time produces more stable knowledge
that decays at a slower rate, while massing practice produces
less stable knowledge that decays at a faster rate. Since
model time and the decay rate are essential to how PPE
captures learning and decay, we include them separately
as features in the machine learning models. For a more
extensive description of the mechanics of the PPE, please
see [25, 26].

In the CPR field study, PPE was fit separately to each
participant’s history of compression and ventilation scores.
We refer to this variant as the original PPE throughout
the paper. The rationale for individual fits was from prior
research suggesting that each individual would have unique
learning and forgetting trajectories across sessions due to
psychometric differences, the trajectories would vary for
compressions and ventilations, and thus predictive accuracy
would be maximized by fitting to each student on each skill.

Here, we conduct post-hoc simulations to explore these as-
sumptions by comparing the methodology used in the field
study to less granular PPE variants in which free parameters
are fit to: experimental condition (acquisition and mainte-

nance intervals), skill (compressions and ventilations), user,
or user’s performance profile. By exploring these different
groupings for which a set of unique parameters are estimated,
we evaluate the trade-space between model flexibility and
predictive accuracy, and how this interacts with the amount
of data available for fitting the models.

2.3.2 Machine learning models
We used four different machine learning models. Depending
on the approach, these were either trained to predict the
score (red arrow in Figure 1) or PPE’s residuals (purple
arrow in Figure 1). For either task, all models had access to
all input features outlined in section 2.2 (also see x-axis of
Figure 4A). All models were run with the default settings of
the cited R packages [21].

As the simplest model, we fit a single decision tree to the
scores/residuals. Each tree was pruned through 10-fold cross
validation—as implemented in [22]—to avoid overfitting. In
most cases, this resulted in very shallow trees and sometimes
even single node “stumps.” Hence, the decision trees can be
thought of as baseline models.

The most complex model was a random forest [4], which is
an ensemble of decision trees. Using the default settings in
[15], we used both bagging and random feature sub-setting
to grow a forest of 500 trees. A recent comparison of gradient
boosting algorithms included random forests as a comparison
and nicely showed that they perform very well on a range
of ML tasks and have the added benefit of not requiring
hyperparameter tuning [3]. The disadvantage of random
forests—as with many ML approaches—is that the internal
mechanics that result in a prediction are not easily inspected
(see our discussion around Figure 4 below).

The two other models were ridge regression and the lasso
[10], which apply slightly different shrinkage terms when
coefficients are estimated. The key difference between the
two methods is that ridge regression will retain coefficients
for all input features, while the lasso effectively performs
feature selection (see section 6.2 in [12] for an introduction).
This generally makes lasso models more interpretable. Both
models have a single hyperparameter, λ, that was tuned
for each iterative prediction using the cross-validation pro-
cedure implemented in [8] and all numerical features were
standardized.

2.4 Simulation study and analysis
The approach to our simulation study can be summarized as
follows: For each session s = 1, 2, . . . , 7, train the models on
data up to session s and issue predictions for the pre-test of
session s+ 1. We focused on pre-test scores because we were
interested in predicting students’ readiness to perform CPR
compressions and ventilations, prior to additional training.
The procedure was run for all 29 (combinations of) mod-
els described above and generated iterative predictions for
sessions 2 through 8. The quality of predictions across the
models will be compared by computing the mean absolute
error (MAE), which summarizes how accurately, on average,
each model predicts the scores recorded in the subsequent
session. This yields 7 × (4 + 20 + 5) = 203 (i.e., number of
predicted sessions times number of models) errors. For the
sake of easier presentation of these results, we subsequently
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Figure 2: Average MAE across sessions for all models.

summarize the errors by (i) computing the average MAE for
each model (Figure 2), and (ii) ranking the models based on
their errors (Table 2). These overall results are elaborated
on with additional figures and tables that highlight relevant
details.

3. RESULTS
Figure 2 presents the average MAE for all 29 models and
speaks to all three research questions posed in section 1.1.
As detailed in section 2.4, the 203 prediction errors were
aggregated across sessions and the average MAE for each
combination of models is presented as a heatmap. The color-
coding corresponds to the magnitude of the errors; lower
values are better. By averaging across sessions, variations
in predictive accuracy as a function of session (see Figure 3)
is lost but it becomes easier to assess the model’s relative
performance in one glance.

First, we can look at the “PPE alone” row in Figure 2 to
compare the five PPE variants that were tested. Overall, the
original instantiation of the cognitive model as used in the
CPR field study—if used alone—does indeed outperform the
more constrained variants explored here. This is somewhat
surprising since the original model exhibited signs of over-
fitting (i.e., fit MAE lower than prediction MAE) that were
ameliorated for the constrained variants of PPE. However, it
appears that despite overfitting the training data, the orig-
inal variant of PPE did produce the best predictions after
all.

Second, whether a number of off-the-shelf ML approaches
would have yielded superior predictions than the cognitive
model can be assessed by comparing the cell original PPE
alone (MAE = 19.5) with the prediction errors in the “ML
alone” column in Figure 2. All ML approaches yield average
errors larger than 19.5 when applied alone, which suggests
that the ML models tested here—if used by themselves—
would not have resulted in better predictions overall. How-
ever, the differences in prediction errors are not large and
the ridge and lasso regression in particular perform well on
average.

And third, and most importantly, we turn to the PPE+ML
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Figure 3: Comparison of all models in the “random forest”
row of Figure 2, showing prediction errors for each session.

combinations. These correspond to the larger facet labeled
“PPE variants” in Figure 2. A number of notable patterns
emerge: the average MAE for the original PPE is hardly
affected by adding any of the ML models to predict its
residuals. This might be because this variant of PPE is
very flexible, which restricts the residuals in the training
data that the ML can actually fit to. For all other PPE
variants, we see a gradient from top to bottom, with average
MAEs decreasing with ML models relative to PPE alone.
The decision trees are an exception to this pattern and seem
to worsen the performance more often than not. Otherwise,
we generally see the lasso and ridge regressions improving
on PPE alone and the PPE+random forest resulting in the
best performance for all PPE variants.

Zooming in on the models using random forests, Figure 3
shows the session-by-session prediction errors of the ran-
dom forest alone (ML alone) and the PPE+random forest
combinations. We omitted predictions for the second ses-
sion because they are quite poor for the random forests
combined with the condition and skill PPE variants, which
distorts the y-axis and obscures differences between models
in the later sessions1. The figure highlights that the ran-
dom forest alone consistently performs worse than all other
combinations of models, in which the random forest is used
specifically to learn PPE’s residuals rather than observed per-
formance. This suggests that the most promising approach
is an ensemble of a PPE variant that captures the overall
temporal dynamics to issue predictions that are subsequently
fine-tuned by a random forest that can leverage all other
available input features.

Another way to summarize these results is by ranking all 29
models’ MAE within each session and computing the average
rank for each PPE variant. These average ranks are shown

1Predictions for session 2 were generally much worse than
for all subsequent sessions. We ran all analyses reported here
without session 2 predictions to confirm that our conclusions
do not depend on differences between models on session 2.
If session 2 is omitted, the skill PPE variant performs a
little better overall but results are not otherwise affected
drastically.



Table 1: Comparison of PPE variants across all ML models.

PPE variant average rank average MAE

profile 11.9 20.1
skill 12.7 23.2

original 15.1 19.3
user 17.2 20.8

condition 18.4 23.4

in Table 1, and reveal that although the original PPE yields
the lowest overall average MAE, both the profile and skill
variants achieve better average ranks. This suggests that if
ML models are leveraged to predict PPE’s residuals, more
constrained variants of PPE tend to perform better. However,
even the lowest average ranks listed in Table 1 is relatively
high, suggesting that no model consistently outperforms
the others. This observation is confirmed by inspecting the
models’ MAEs in detail (not shown here), which reveals that
for some sessions, most models perform effectively identically.

Lastly, we present the top 10 models in terms of their ranking
in Table 2. Here, the ranks are computed as an average
across the seven sessions each model made predictions for.
The best-performing model is the PPE with parameters for
each performance profile whose residuals are predicted by
a random forest. Figure 2 corroborates this observations,
showing that this combination of models obtains the lowest
average MAE overall. Notably, all five instances of the
original PPE and five out of six instances of random forests
are represented in the top 10, confirming that these models
perform very well in various combinations.

3.1 Peeking into the random forest
Space constraints limit the amount of model interrogation
we can report here. However, we want to at least showcase
one prominent example. Table 2 and Figure 2 show that the
best model overall is the combination of the PPE variant
with unique parameters for each performance profile and a
random forest that learns its residuals. (This model is the
blue line in Figure 3, which highlights that other models
perform very similarly.) Figure 4A shows the normalized
feature importance computed for each input feature (white
and yellow arrows in Figure 1) for each iterative session that
predictions are made for. Superimposed are the average
importance and the spread (in black) and features are sorted
from least to most important based on average importance.
Notably, most time-invariant features (gender, age, etc.) are
equally important across the seven iterations. The session

counter, stability, and model time, on the other hand,
become gradually more important as more sessions were
included in the training data, while the opposite pattern is
evident for compvent and users’ performance profile.

Feature importance plots as shown here can be informa-
tive but should be interpreted with caution since they do
not capture and visualize the potential intricate non-linear
relationships between the various input features [17]. Further-
more, feature importance and their impact on predictions are
not necessarily the same—more advanced approaches exist
[19] but are beyond the scope of the current paper.

Table 2: The top 10 models overall sorted by average rank
across the seven predictions made by each model.

PPE variant ML model average rank

1 profile random forest 5.3
2 skill random forest 6.7
3 condition random forest 7.9
4 original lasso 8.1
5 original random forest 8.3
6 original decision tree 8.4
7 original ridge 8.6
8 user random forest 10.1
9 original PPE alone 10.7
10 condition ridge 11.9

Figure 4B zooms in on two important features and shows the
predictions made for the profile PPE model for the fourth ses-
sion against the residuals the random forest predicts for each
instance. We generally see the most differentiation between
models on Session 4, which is why we chose it—however,
this figure is broadly representative of the profile PPE+RF
dynamics for other sessions. Figure 4B suggests that ven-
tilations are more often down-adjusted than compressions
(i.e., more triangles below the equality line) unless PPE pre-
dicts near-ceiling performance. The fact that model time
is consistently identified as the most important feature (see
Figure 4A) but no clear relationship between the magnitude
of the adjustment (i.e., distance from equality line) emerges
in Figure 4B highlights the disadvantage of applying ML
models—such as a random forest—that are challenging to
interrogate.

4. DISCUSSION
The post-hoc simulation study reported here suggests that
the original cognitive model used for prescriptive, adaptive
scheduling in the CPR field study performed very well overall.
In fact, in the aggregate, it resulted in lower average predic-
tion errors than both the more constrained variants of PPE
and the machine learning models included in the current
comparison. Thus, it is unlikely that the tested off-the-shelf
ML models would have performed better than the original
PPE, although the regularized regression models (ridge and
lasso) in particular achieved prediction errors similar to the
original PPE. We expected the ML models to outperform
the cognitive model because the latter’s main “insights” (the
estimated model time and decay rate) were included as in-
put features to the ML models (yellow arrow in Figure 1.
This suggests that the PPE, using much less information,
was slightly better at extrapolating performance to the next
session.

The current explorations also showed, however, that an en-
semble cognitive and ML model has the potential to perform
slightly better than either alone. Notably, the more con-
strained variants of PPE performed particularly well in this
ensemble arrangement. One possible explanation is that the
less flexible cognitive model operates as a smoothing function
on the temporal information, which leaves the ML to learn
under which conditions (i.e., [combinations of] input features)
the general temporal dynamics should be adjusted to fur-
ther improve predictions. This framing of the procedure is
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conceptually akin to a two-step boosting algorithm [7] and
the “fine-tuning” of predictions induced by the second step
(the ML model in this case) is nicely illustrated in Figure 4B,
which shows the results of the first step (the constrained cog-
nitive model’s predictions on the x-axis), against the results
after the second boosting-like step (the PPE+ML predictions
on the y-axis). In this process, the initial PPE prediction’s
quite restricted range is expanded by the random forest,
which can—and does (cf. Figure 4A)—draw on various input
features.

The ensemble approach outlined here has the added benefit
of a modular structure. Thus, it is easy to make design
decisions, particularly regarding (i) which constraints should
be built into the parameter fitting procedure for PPE, and
(ii) what type of ML model is most informative. The latter
will determine where on the continuum of interpretability the
ensemble will fall. For example, the dynamics of the random
forest that predicts the profile PPE’s residuals (highlighted in
Figure 4), does not lend itself to straightforward model inter-
rogation but the PPE+lasso and PPE+ridge combinations
would not reduce the interpretability of the ensemble, while
slightly reducing prediction errors relative to PPE alone (see
Figure 2).

It should be pointed out, however, that the improvement in
prediction errors relative to the original PPE alone is minor.
Nevertheless, we consider these findings significant for two
reasons: First, the small improvement vindicates that PPE’s
time-based mechanisms capture the majority of variance in
this task domain. Second, the PPE+ML ensemble approach
used here serves as a proof-of-concept that illustrates how
the core mechanism of PPE can be preserved while incorpo-
rating an arbitrary number of additional input features. For
example, some of the input features used here were specific to
the field study’s design (notably acqint and maintint) and
would not be present in the hospital setting RQI systems are
primarily deployed in. In such settings, however, other input
features would be available (e.g., job title or department)
and samples would be larger and more heterogeneous, which

would conceivably introduce more variance that is not a
function of time-based features alone. We expect that under
these conditions, the ensemble approach’s advantage over
PPE alone would be more pronounced.

In the current effort, we choose to assess the models’ ability
to make session-by-session predictions. This approach meant
that events did not line up chronologically (a student in the
weekly acquisition condition will have completed the first four
session before a student in the 3-month condition returned
for their second session) but the amount of training data
available for each student is equalized—only the lag between
events varies. This reveals, for example, that predictions
improve up to session 4 (the end of the acquisition phase;
see Figure 3) and then get worse for session 5, which is when
students switch to the maintenance phase. This suggests
that the models get better at forecasting performance as
more data from a consistent schedule becomes available, and
that one should expect a dip in predictive accuracy as the
temporal dynamics are altered.

Future work in this domain should validate the approach
presented here in more naturalistic data that more closely
resemble how medical professionals train and maintain CPR
proficiency. We believe that cognitive models in particular—
and a cognitive-machine learning ensemble specifically—hold
great promise in moving towards a predictive framework that
affords personalized, adaptive refresher training schedules
that are tailored towards individual learning needs—either
of an individual or groups of learners that exhibit similar
performance profiles. Furthermore, the outlined predictive
pipeline’s potential value in adaptive, educational learning
system outside of the medical domain should be explored.
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